Biology * Chemistry * Physics age ~14-16 * Advanced pre-university Chemistry age ~16-18
Revision help links for separate science AQA GCSE 9-1 Biology PAPER 2
SCROLL DOWN TO SEE CONTENT and FOLLOW LINKS or [WEBSITE SEARCH BOX]
Revision summary help for the GCSE 9-1 separate science AQA GCSE 9-1 BIOLOGY 2nd Exam Biology Paper 2 - learning objectives for exam paper (re-edit) AQA GCSE biology 2 8461/2F 8461/2H biology 2 2020 exam paper onwards REVISION for AQA GCSE (Grade 9-1) BIOLOGY 8461 biology 2 Paper 2 2F 2H papers - AQA (Grade 9-1) GCSE BIOLOGY Topic 5 "Homeostasis and response", Topic 6 "Inheritance, variation and evolution", Topic 7 "Ecology" LINK for AQA 9-1 GCSE BIOLOGY 1 Paper 1 Link for AQA GCSE Combined Science Trilogy Biology Paper 1 Link for AQA GCSE Combined Science Trilogy Biology Paper 2 This is a BIG website, you need to take time to explore it [SEARCH BOX] Use your mobile phone in 'landscape' orientation? email doc brown - query? or comment? For ALL other exam papers, use and bookmark the link below PLEASE READ CAREFULLY THE FOLLOWING POINTS before using my AQA 9-1 GCSE science pages
Syllabus-specification CONTENT INDEX of revision summary notes (revision study notes for AQA gcse biology) Revision summaries for AQA 9-1 GCSE Biology 1 Paper 1 (separate science AQA GCSE biology) What's assessed in this paper? Topics 1-4 (on a separate page) SUMMARY Topic 1. Cell biology (AQA 9-1 GCSE BIOLOGY 1 paper 1) SUMMARY Topic 2. Organisation (AQA 9-1 GCSE BIOLOGY 1 paper 1) SUMMARY Topic 3. Infection and response (AQA 9-1 GCSE BIOLOGY 1 paper 1) SUMMARY Topic 4. Bioenergetics (AQA 9-1 GCSE BIOLOGY 1 paper 1) Revision summaries for AQA 9-1 GCSE Biology 2 paper 2 (separate science AQA GCSE biology) What's assessed in this paper? Topics 5-7 (THIS PAGE) (revision study notes for AQA gcse biology) SUMMARY Topic 5. Homeostasis and response (AQA 9-1 GCSE BIOLOGY 2 paper 2) Topic 5.2 The human nervous system Topic 5.3 Hormonal coordination in humans SUMMARY Topic 6. Inheritance, variation and evolution (AQA 9-1 GCSE BIOLOGY 2 paper 2) Topic 6.2 Variation and evolution Topic 6.3 The development of understanding of genetics and evolution Topic 6.4 Classification of living organisms SUMMARY Topic 7. Ecology (AQA 9-1 GCSE BIOLOGY 2 paper 2) Topic 7.1 Adaptations, interdependence and competition Topic 7.2 Organisation of an ecosystem Topic 7.3 Biodiversity and the effect of human interaction on ecosystems Topic 7.4 Trophic levels in an ecosystem SUBJECT CONTENT of the science AQA syllabus-specification 8461 (revision study notes for AQA gcse biology) Fundamental biological concepts and principles needed for BOTH biology papers. See the other AQA biology page for paper 1 Topic 5 Homeostasis and response (AQA GCSE 9-1 Biology 2, Paper 2) Know that cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. In order to do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. This section explores the structure and function of the nervous system and how it can bring about fast responses. Know that its the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Know that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Topic 5.1 Homeostasis (revision study notes for AQA gcse biology) (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") Topic 5.1 Homeostasis (revision study notes for AQA gcse biology) The Importance of homeostasis (revision study notes for AQA gcse biology) You should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. You should be able to explain the importance of homeostasis in maintaining optimal conditions for enzyme action and all cell functions. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of:
These automatic control systems may involve nervous responses or chemical responses. All control systems include:
Homeostasis - introduction to how it functions (negative feedback systems explained) Homeostasis - control of blood sugar level - insulin and diabetes Homeostasis - water control, urea and ion concentrations and kidney function Homeostasis - thermoregulation, control of temperature An introduction to the nervous system including the reflex arc Topic 5.2 The human nervous system (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") 5.2.1 Structure and function (revision study notes for AQA gcse biology) You should be able to explain how the structure of the nervous system is adapted to its functions. The nervous system enables humans to react to their surroundings and to coordinate their behaviour. Information from receptors passes along cells (neurones) as electrical impulses to the central nervous system (CNS). The CNS is the brain and spinal cord. The CNS coordinates the response of effectors which may be muscles contracting or glands secreting hormones.
You should be able to explain how the various structures in a reflex arc relate to their function and understand why reflex actions are important. Reflex actions are automatic and rapid; they do not involve the conscious part of the brain. In a simple reflex action such as a pain withdrawal reflex:
You should understand why reflex actions are important. You should be able to extract and interpret data from graphs, charts and tables, about the functioning of the nervous system. You should be able to translate information about reaction times between numerical and graphical forms. Revise required practical 5: Investigating the effect of a factor on human reaction time. An introduction to the nervous system including the reflex arc 5.2.2 The brain (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") Know that the brain controls complex behaviour. It is made of billions of interconnected neurones and has different regions that carry out different functions.
You should be able to identify the structures listed above on a diagram of the brain and describe their functions. (HT only) You should be able to explain some of the difficulties of investigating brain function and treating brain damage and disease. (HT only) Neuroscientists have been able to map the regions of the brain to particular functions by studying patients with brain damage, electrically stimulating different parts of the brain and using MRI scanning techniques. The complexity and delicacy of the brain makes investigating and treating brain disorders very difficult. (HT only) Be able to evaluate the benefits and risks of procedures carried out on the brain and nervous system. The BRAIN - what the different parts do and the dangers if damaged 5.2.3 The eye (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to relate the structures of the eye to their functions, including :
The eye is a sense organ containing receptors sensitive to light intensity and colour. In the eye you should be able to identify the following structures on a diagram of the eye and explain how their structure is related to their function:
Know that accommodation is the process of changing the shape of the lens to focus on near or distant objects.
Two common defects of the eyes are myopia (short sightedness) and hyperopia (long sightedness) in which rays of light do not focus on the retina.
You should be able to interpret ray diagrams, showing these two common defects of the eye and demonstrate how spectacle lenses correct them. The eye - structure and function - correction of vision defects 5.2.4 Control of body temperature (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") Know that body temperature is monitored and controlled by the thermoregulatory centre in the brain. The thermoregulatory centre contains receptors sensitive to the temperature of the blood. The skin contains temperature receptors and sends nervous impulses to the thermoregulatory centre. If the body temperature is too high, blood vessels dilate (vasodilation) and sweat is produced from the sweat glands. Both these mechanisms cause a transfer of energy from the skin to the environment. If the body temperature is too low, blood vessels constrict (vasoconstriction), sweating stops and skeletal muscles contract (shiver). (HT only) You should be able to explain how these mechanisms lower or raise body temperature in a given context. Homeostasis - thermoregulation, control of temperature Topic 5.3 Hormonal coordination in humans (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") 5.3.1 Human endocrine system (revision study notes for AQA gcse biology) You should be able to describe the principles of hormonal coordination and control by the human endocrine system. The endocrine system is composed of glands which secrete chemicals called hormones directly into the bloodstream. The blood carries the hormone to a target organ where it produces an effect. Compared to the nervous system, the effects are slower, but, act for longer. The pituitary gland in the brain is a ‘master gland’ which secretes several hormones into the blood in response to body conditions. These hormones in turn act on other glands to stimulate other hormones to be released to bring about effects. You should be able to identify the position of the following on a diagram of the human body:
Homeostasis - introduction to how it functions (negative feedback systems explained) Hormone systems - Introduction to the endocrine system - adrenaline & thyroxine hormones 5.3.2 Control of blood glucose concentration (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") Know that blood glucose concentration is monitored and controlled by the pancreas. If the blood glucose concentration is too high, the pancreas produces the hormone insulin that causes glucose to move from the blood into the cells. In liver and muscle cells excess glucose is converted to glycogen for storage. You should be able to explain how insulin controls blood glucose (sugar) levels in the body. Type 1 diabetes is a disorder in which the pancreas fails to produce sufficient insulin. It is characterised by uncontrolled high blood glucose levels and is normally treated with insulin injections. In Type 2 diabetes the body cells no longer respond to insulin produced by the pancreas. A carbohydrate controlled diet and an exercise regime are common treatments. Obesity is a risk factor for Type 2 diabetes. You should be able to compare Type 1 and Type 2 diabetes and explain how they can be treated. You should be able to extract information and interpret data from graphs that show the effect of insulin in blood glucose levels in both people with diabetes and people without diabetes. (HT only) If the blood glucose concentration is too low, the pancreas produces glucagon that causes glycogen to be converted into glucose and released into the blood. (HT only) You should be able to explain how glucagon interacts with insulin in a negative feedback cycle to control blood glucose (sugar) levels in the body. Be able to evaluate information around the relationship between obesity and diabetes, and make recommendations taking into account social and ethical issues. Homeostasis - control of blood sugar level - insulin and diabetes Keeping healthy - diet and exercise, diabetes, body/mass/hip indexes 5.3.3 Maintaining water and nitrogen balance in the body (revision study notes for AQA gcse biology) (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to explain the effect on cells of osmotic changes in body fluids. Water leaves the body via the lungs during exhalation. Water, ions and urea are lost from the skin in sweat. There is no control over water, ion or urea loss by the lungs or skin. Excess water, ions and urea are removed via the kidneys in the urine. If body cells lose or gain too much water by osmosis they do not function efficiently. (HT only) The digestion of proteins from the diet results in excess amino acids which need to be excreted safely. In the liver these amino acids are deaminated to form ammonia. Ammonia is toxic and so it is immediately converted to urea for safe excretion. You should be able to describe the function of kidneys in maintaining the water balance of the body. The kidneys produce urine by filtration of the blood and selective reabsorption of useful substances such as glucose, some ions and water.
You should be able to translate tables and bar charts of glucose, ions and urea before and after filtration. (HT only) You should be able to describe the effect of ADH on the permeability of the kidney tubules. (HT only) The water level in the body is controlled by the hormone ADH which acts on the kidney tubules. ADH is released by the pituitary gland when the blood is too concentrated and it causes more water to be reabsorbed back into the blood from the kidney tubules. This is controlled by negative feedback. People who suffer from kidney failure may be treated by organ transplant or by using kidney dialysis. You should be able to describe the basic principles of how dialysis works. You should be able to evaluate the advantages and disadvantages of treating organ failure by mechanical device or transplant. 5.3.4 Hormones in human reproduction (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to describe the roles of hormones in human reproduction, including the menstrual cycle. During puberty reproductive hormones cause secondary sex characteristics to develop. Oestrogen is the main female reproductive hormone produced in the ovary. At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation. Testosterone is the main male reproductive hormone produced by the testes and it stimulates sperm production. Several hormones are involved in the menstrual cycle of a woman.
(HT only) You should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. (HT only) You should be able to extract and interpret data from graphs showing hormone levels during the menstrual cycle. Hormone systems - menstrual cycle, contraception, fertility treatments 5.3.5 Contraception (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to evaluate the different hormonal and non-hormonal methods of contraception. Fertility can be controlled by a variety of hormonal and non-hormonal methods of contraception. These include:
Be able to show why issues around contraception cannot be answered by science alone. Be able to explain everyday and technological applications of science - evaluate associated personal, social, economic and environmental implications; and make decisions based on the evaluation of evidence and arguments. Hormone systems - menstrual cycle, contraception, fertility treatments 5.3.6 The use of hormones to treat infertility (HT only) (revision study notes for AQA gcse biology) (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to explain the use of hormones in modern reproductive technologies to treat infertility. This includes giving FSH and LH in a 'fertility drug' to a woman whose own level of FSH is too low to stimulate eggs to mature. She may then become pregnant in the normal way. In Vitro Fertilisation (IVF) treatment.
Note that developments of microscopy techniques have enabled IVF treatments to develop. You should understand social and ethical issues associated with IVF treatments. Although fertility treatment gives a woman the chance to have a baby of her own:
Be able to evaluate from the perspective of patients and doctors the methods of treating infertility. Hormone systems - menstrual cycle, contraception, fertility treatments 5.3.7 Negative feedback (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to explain the roles of thyroxine and adrenaline in the body as negative feedback systems. Adrenaline is produced by the adrenal glands in times of fear or stress. It increases the heart rate and boosts the delivery of oxygen and glucose to the brain and muscles, preparing the body for ‘flight or fight’. Thyroxine from the thyroid gland stimulates the basal metabolic rate. It plays an important role in growth and development. Thyroxine levels are controlled by negative feedback. Be able to interpret and explain simple diagrams of negative feedback control. Homeostasis - introduction to how it functions (negative feedback systems explained) Hormone systems - Introduction to the endocrine system - adrenaline & thyroxine hormones Topic 5.4 Plant hormones (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") 5.4.1 Control and coordination (revision study notes for AQA gcse biology) Plants produce hormones to coordinate and control growth and responses: to light (phototropism); and gravity (gravitropism or geotropism). Unequal distributions of auxin cause unequal growth rates in plant roots and shoots. (HT only) Gibberellins are important in initiating seed germination. (HT only) Ethene controls cell division and ripening of fruits. (HT only) The mechanisms of how gibberellins and ethene work are NOT required. Look up your investigation of the effect of light or gravity on the growth of newly germinated seedlings.
Hormone control in plants and uses of plant hormones 5.4.2 Use of plant hormones (AQA GCSE Biology, Paper 2, Topic 5 "Homeostasis and response") You should be able to describe the effects of some plant hormones and the different ways people use them to control plant growth. Plant growth hormones are used in agriculture and horticulture. Auxins are used as (i) weed killers, (ii) as rooting powders and (iii) for promoting growth in tissue culture. Ethene is used in the food industry to control ripening of fruit during storage and transport. Gibberellins can be used to (i) end seed dormancy, (ii) promote flowering and (iii) increase fruit size. You should understand how the everyday use of hormones as weed killers has an effect on biodiversity. Hormone control in plants and uses of plant hormones Topic 6 Inheritance, variation and evolution (revision study notes for AQA gcse biology) (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") In Topic 6 you will discover how the number of chromosomes are halved during meiosis and then combined with new genes from the sexual partner to produce unique offspring. Gene mutations occur continuously and on rare occasions can affect the functioning of the animal or plant. These mutations may be damaging and lead to a number of genetic disorders or death. Very rarely a new mutation can be beneficial and consequently, lead to increased fitness in the individual. Variation generated by mutations and sexual reproduction is the basis for natural selection; this is how species evolve. An understanding of these processes has allowed scientists to intervene through selective breeding to produce livestock with favoured characteristics. Once new varieties of plants or animals have been produced it is possible to clone individuals to produce larger numbers of identical individuals all carrying the favourable characteristic. Scientists have now discovered how to take genes from one species and introduce them in to the genome of another by a process called genetic engineering. In spite of the huge potential benefits that this technology can offer, genetic modification still remains highly controversial. Topic 6.1 Reproduction (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") 6.1.1 Sexual and asexual reproduction (revision study notes for AQA gcse biology) You should understand that meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. Sexual reproduction involves the joining (fusion) of male and female gametes:
In sexual reproduction there is mixing of genetic information which leads to variety in the offspring. The formation of gametes involves meiosis. Asexual reproduction involves only one parent and no fusion of gametes. There is no mixing of genetic information. This leads to genetically identical offspring (clones). Only mitosis is involved. Cell division - cell cycle - mitosis, meiosis, sexual/asexual reproduction, binary fission 6.1.2 Meiosis (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to explain how meiosis halves the number of chromosomes in gametes and fertilisation restores the full number of chromosomes. Cells in reproductive organs divide by meiosis to form gametes. When a cell divides to form gametes:
Gametes join at fertilisation to restore the normal number of chromosomes. The new cell divides by mitosis. The number of cells increases. As the embryo develops cells differentiate.
CELL DIVISION - cell cycle - mitosis and meiosis in sexual and asexual reproduction 6.1.3 Advantages and disadvantages of sexual and asexual reproduction (revision study notes for AQA gcse biology)
Advantages of sexual reproduction:
Advantages of asexual reproduction:
Some organisms reproduce by both methods depending on the circumstances.
Knowledge of reproduction in organisms is restricted to those mentioned, but you are expected to be able to explain the advantages and disadvantages for any organism if given appropriate information. Appreciate the historical developments of our understanding of the causes and prevention of malaria. CELL DIVISION - cell cycle - mitosis and meiosis in sexual and asexual reproduction 6.1.4 DNA and the genome (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to describe the structure of DNA and define genome. The genetic material in the nucleus of a cell is composed of a chemical called DNA. DNA is a polymer made up of two strands forming a double helix. The DNA is contained in structures called chromosomes. A gene is a small section of DNA on a chromosome. Each gene codes for a particular sequence of amino acids, to make a specific protein. DNA structure and Protein Synthesis The genome of an organism is the entire genetic material of that organism. The whole human genome has now been studied and this will have great importance for medicine in the future. You should be able to discuss the importance of understanding the human genome. This is limited to the:
6.1.5 DNA structure (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to describe DNA as a polymer made from four different nucleotides. Each nucleotide consists of a common sugar and phosphate group with one of four different bases attached to the sugar. DNA contains four bases, A, C, G and T. A sequence of three bases is the code for a particular amino acid. The order of bases controls the order in which amino acids are assembled to produce a particular protein. The long strands of DNA consist of alternating sugar and phosphate sections. Attached to each sugar is one of the four bases. The DNA polymer is made up of repeating nucleotide units Be able to interpret a diagram of DNA structure but you will not be required to reproduce it. (HT only, rest of 6.1.5) You should be able to:
(HT only) In the complementary strands a C is always linked to a G on the opposite strand and a T to an A. (HT only) You are not expected to know or understand the structure of mRNA, tRNA, or the detailed structure of amino acids or proteins. (HT only) You should be able to explain how a change in DNA structure may result in a change in the protein synthesised by a gene. (HT only) Proteins are synthesised on ribosomes, according to a template. Carrier molecules bring specific amino acids to add to the growing protein chain in the correct order. (HT only) When the protein chain is complete it folds up to form a unique shape. This unique shape enables the proteins to do their job as enzymes, hormones or forming structures in the body such as collagen. (HT only) Mutations occur continuously. Most do not alter the protein, or only alter it slightly so that its appearance or function is not changed. (HT only) A few mutations code for an altered protein with a different shape. An enzyme may no longer fit the substrate binding site or a structural protein may lose its strength. (HT only) Not all parts of DNA code for proteins. Non-coding parts of DNA can switch genes on and off, so variations in these areas of DNA may affect how genes are expressed. Experience of modelling insertions and deletions in chromosomes to illustrate mutations is helpful. DNA structure and Protein Synthesis An introduction to genetic variation and the formation and consequence of mutations 6.1.6 Genetic inheritance (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to explain the following ten terms:
Some characteristics are controlled by a single gene, such as: fur colour in mice; and red-green colour blindness in humans. Each gene may have different forms called alleles. The alleles present, or genotype, operate at a molecular level to develop characteristics that can be expressed as a phenotype. A dominant allele is always expressed, even if only one copy is present. A recessive allele is only expressed if two copies are present (therefore no dominant allele present). If the two alleles present are the same the organism is homozygous for that trait, but if the alleles are different they are heterozygous. Most characteristics are a result of multiple genes interacting, rather than a single gene. You should be able to understand the concept of probability in predicting the results of a single gene cross, but recall that most phenotype features are the result of multiple genes rather than single gene inheritance. You should be able to use direct proportion and simple ratios to express the outcome of a genetic cross. You should be able to complete a Punnett square diagram and extract and interpret information from genetic crosses and family trees. (HT only) You should be able to construct a genetic cross by Punnett square diagram and use it to make predictions using the theory of probability. Introduction to the inheritance of characteristics and genetic diagrams (including Punnett squares) 6.1.7 Inherited disorders (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Know that some disorders are inherited. These disorders are caused by the inheritance of certain alleles.
You should make informed judgements about the economic, social and ethical issues concerning embryo screening, given appropriate information. You should appreciate that embryo screening and gene therapy may alleviate suffering but consider the ethical issues which arise. Introduction to the inheritance of characteristics and genetic diagrams (including Punnett squares) An introduction to genetic variation and the formation and consequence of mutations 6.1.8 Sex determination (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Know that ordinary human body cells contain 23 pairs of chromosomes. 22 pairs control characteristics only, but one of the pairs carries the genes that determine sex.
You should to be able to carry out a genetic cross to show sex inheritance. You should understand and be able to use direct proportion and simple ratios in genetic crosses Inherited characteristics and human sexual reproduction, genetic fingerprinting and its uses Topic 6.2 Variation and evolution (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") 6.2.1 Variation (revision study notes for AQA gcse biology) You should be able to describe simply how the genome and its interaction with the environment influence the development of the phenotype of an organism. Differences in the characteristics of individuals in a population is called variation and may be due to differences in:
You should be able to:
Know that mutations occur continuously. Very rarely a mutation will lead to a new phenotype. If the new phenotype is suited to an environmental change it can lead to a relatively rapid change in the species (can eventually result in a new species - speciation) An introduction to genetic variation and the formation and consequence of mutations 6.2.2 Evolution (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to describe evolution as a change in the inherited characteristics of a population over time through a process of natural selection which may result in the formation of a new species. The theory of evolution by natural selection states that all species of living things have evolved from simple life forms that first developed more than three billion years ago. You should be able to explain how evolution occurs through natural selection of variants that give rise to phenotypes best suited to their environment. If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species. Be able to use the theory of evolution by natural selection in an explanation. 6.2.3 Selective breeding (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to explain the impact of selective breeding of food plants and domesticated animals. Selective breeding (artificial selection) is the process by which humans breed plants and animals for particular genetic characteristics. Humans have been doing this for thousands of years since they first bred food crops from wild plants and domesticated animals. Selective breeding involves choosing parents with the desired characteristic from a mixed population. They are bred together. From the offspring those with the desired characteristic are bred together. This continues over many generations until all the offspring show the desired characteristic. The characteristic can be chosen for usefulness or appearance:
Appreciate that selective breeding can lead to ‘inbreeding’ where some breeds are particularly prone to disease or inherited defects. Be able to explain the benefits and risks of selective breeding given appropriate information and consider related ethical issues. 6.2.4 Genetic engineering (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to describe genetic engineering as a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic. Plant crops have been genetically engineered to be resistant to diseases or to produce bigger better fruits. Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes. You should be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections. In genetic engineering, genes from the chromosomes of humans and other organisms can be ‘cut out’ and transferred to cells of other organisms. Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides. GM crops generally show increased yields. Concerns about GM crops include the effect on populations of wild flowers and insects. Some people feel the effects of eating GM crops on human health have not been fully explored. Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders. (HT only, rest of 6.2.4) You should be able to describe the main steps in the process of genetic engineering. (HT only) In genetic engineering:
(HT only) Be able to interpret information about genetic engineering techniques and to make informed judgements about issues concerning cloning and genetic engineering, including GM crops. Genetic engineering: uses - making insulin, medical applications, GM crops, food security Cloning - tissue culture of plants and animals 6.2.5 Cloning (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple, method used by gardeners to produce many identical new plants from a parent plant. Embryo transplants: splitting apart cells from a developing animal embryo before they become specialised, then transplanting the identical embryos into host mothers. Adult cell cloning:
Be able to explain the potential benefits and risks of genetic engineering in agriculture and in medicine and appreciate some people have ethical objections. Genetic engineering: uses - making insulin, medical applications, GM crops, food security Cloning - tissue culture of plants and animals Topic 6.3 The development of understanding of genetics and evolution 6.3.1 Theory of evolution (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Know that Charles Darwin, as a result of observations on a round the world expedition, backed by years of experimentation and discussion and linked to developing knowledge of geology and fossils, proposed the theory of evolution by natural selection:
Darwin published his ideas in On the Origin of Species (1859). There was much controversy surrounding these revolutionary new ideas. The theory of evolution by natural selection was only gradually accepted because:
You should appreciate that the theory of evolution by natural selection developed over time and from information gathered by many scientists as more evidence from observations was acquired. Other theories, including that of Jean-Baptiste Lamarck, are based mainly on the idea that changes that occur in an organism during its lifetime can be inherited. We now know that in the vast majority of cases this type of inheritance cannot occur. A study of creationism is not required. 6.3.2 Speciation (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to:
Alfred Russel Wallace independently proposed the theory of evolution by natural selection. He published joint writings with Darwin in 1858 which prompted Darwin to publish On the Origin of Species (1859) the following year. Wallace worked worldwide gathering evidence for evolutionary theory. He is best known for his work on warning colouration in animals and his theory of speciation, which has since developed further and continues to develop to the present day. Alfred Wallace did much pioneering work on speciation but more evidence over time has led to our current understanding of the theory of speciation. You should be able to describe the steps which give rise to new species. 6.3.3 The understanding of genetics (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to:
In the mid-19th Century Gregor Mendel carried out breeding experiments on plants. One of his observations was that the inheritance of each characteristic is determined by ‘units’ that are passed on to descendants unchanged. In the late 19th Century behaviour of
chromosomes during cell division was observed. In the mid-20th Century the structure of DNA was determined and the mechanism of gene function worked out. This scientific work by many scientists led to the gene theory being developed and you should appreciate that our current understanding of genetics has developed over time and is continuing to the present day onwards! 6.3.4 Evidence for evolution (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") You should be able to describe the evidence for evolution including fossils and antibiotic resistance in bacteria. The theory of evolution by natural selection is now widely accepted. Evidence for Darwin’s theory is now available as it has been shown that characteristics are passed on to offspring in genes. There is further evidence in the fossil record and the knowledge of how resistance to antibiotics evolves in bacteria. Appreciate that data is now available to support the theory of evolution. 6.3.5 Fossils (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Fossils are the ‘remains’ of organisms from hundreds of thousands of years ago, which are found in rocks. Fossils may be formed:
Many early forms of life were soft-bodied, which means that they have left few traces behind. What traces there were have been mainly destroyed by geological activity. This is why scientists cannot be certain about how life began on Earth. We can learn from fossils how much or how little different organisms have changed as life developed on Earth. Be able to extract and interpret information from charts, graphs and tables such as evolutionary trees. You should appreciate why the fossil record is incomplete and understand how scientific methods and theories about evolution have developed over time. 6.3.6 Extinction (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Extinctions occur when there are no remaining individuals of a species still alive. You should be able to describe factors which may contribute to the extinction of a species. eg extinction may be caused by: changes to the environment over geological time, new predators, new diseases, new, more successful, competitors, a single catastrophic event such as a massive volcanic eruptions or collisions with asteroids. 6.3.7 Resistant bacteria (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Know that bacteria can evolve rapidly because they reproduce at a fast rate. Mutations of bacterial pathogens produce new strains. Some strains might be resistant to antibiotics, and so are not killed. They survive and reproduce, so the population of the resistant strain rises. The resistant strain will then spread because people are not immune to it and there is no effective treatment. MRSA is resistant to antibiotics. To reduce the rate of development of antibiotic resistant strains:
The development of new antibiotics is costly and slow and is unlikely to keep up with the emergence of new resistant strains. Topic 6.4 Classification of living organisms (AQA GCSE Biology, Paper 2, Topic 6 "Inheritance, variation and evolution") Know that traditionally living things have been classified into groups depending on their structure and characteristics in a system described by Carl Linnaeus. Linnaeus classified living things into kingdom, phylum, class, order, family, genus and species. Organisms are named by the binomial system of genus and species. You should be able to use information given to show understanding of the Linnaean system. You should be able to describe the impact of developments in biology on classification systems. As evidence of internal structures became more developed due to improvements in microscopes, and the understanding of biochemical processes progressed, new models of classification were proposed. Due to evidence available from chemical analysis there is now a ‘three-domain system’ developed by Carl Woese. In this system organisms are divided into:
Evolutionary trees are a method used by scientists to show how they believe organisms are related. They use current classification data for living organisms and fossil data for extinct organisms. Be able to interpret evolutionary trees. Introduction to plant and animal cell structure and function Topic 7 Ecology (AQA GCSE 9-1 Biology 2 Paper 2) (revision study notes for AQA gcse biology) Know that the Sun is a source of energy that passes through ecosystems. Materials including carbon and water are continually recycled by the living world, being released through respiration of animals, plants and decomposing microorganisms and taken up by plants in photosynthesis Revision Notes All species live in ecosystems composed of complex communities of animals and plants dependent on each other and that are adapted to particular conditions, both abiotic and biotic. These ecosystems provide essential services that support human life and continued development. In order to continue to benefit from these services humans need to engage with the environment in a sustainable way. Appreciate how humans are threatening biodiversity as well as the natural systems that support it and be able to consider some actions we need to take to ensure our future health, prosperity and well-being. Topic 7.1 Adaptations, interdependence and competition (revision study notes for AQA gcse biology) Adaptations, lots of examples explained including extremophiles Carbon cycle, nitrogen cycle, water cycle and decomposition Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs and biomass 7.1.1 Communities (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) You should be able to describe:
You should be able to, when provided with appropriate information:
An ecosystem is the interaction of a community of living organisms (biotic) with the non-living (abiotic) parts of their environment. To survive and reproduce, organisms require a supply of materials from their surroundings and from the other living organisms there. Plants in a community or habitat often compete with each other for light and space, and for water and mineral ions from the soil. Animals often compete with each other for food, mates and territory. Within a community each species depends on other species for food, shelter, pollination, seed dispersal etc. If one species is removed it can affect the whole community. This is called interdependence. A stable community is one where all the species and environmental factors are in balance so that population sizes remain fairly constant. You should be able to extract and interpret information from charts, graphs and tables relating to the interaction of organisms within a community. Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs, trophic levels and biomass 7.1.2 Abiotic factors (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) You should be able to explain how a change in an abiotic factor would affect a given community given appropriate data or context. Abiotic (non-living) factors which can affect a community are:
You should be able to extract and interpret information from charts, graphs and tables relating to the effect of abiotic factors on organisms within a community. Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs, trophic levels and biomass 7.1.3 Biotic factors (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) You should be able to explain how a change in a biotic factor might affect a given community given appropriate data or context. Biotic (living) factors which can affect a community are:
You should be able to extract and interpret information from charts, graphs and tables relating to the effect of biotic factors on organisms within a community. Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency 7.1.4 Adaptations (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) You should be able to explain how organisms are adapted to live in their natural environment, given appropriate information. Organisms have features (adaptations) that enable them to survive in the conditions in which they normally live. These adaptations may be structural, behavioural or functional. Some organisms live in environments that are very extreme, such as at high temperature, great pressure, or high salt concentration. These organisms are called extremophiles. Bacteria living in deep sea vents are extremophiles. Adaptations, lots of examples explained including extremophiles Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs and biomass Topic 7.2 Organisation of an ecosystem (AQA GCSE 9-1 Biology Paper 2) (revision study notes for AQA gcse biology) 7.2.1 Levels of organisation (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) You should understand that photosynthetic organisms are the producers of biomass for life on Earth. Feeding relationships within a community can be represented by food chains. All food chains begin with a producer which synthesises molecules. This is usually a green plant which makes glucose by photosynthesis. A range of experimental methods using transects and quadrats are used by ecologists to determine the distribution and abundance of species in an ecosystem. In relation to abundance of organisms you should be able to:
Producers are eaten by primary consumers, which in turn may be eaten by secondary consumers and then tertiary consumers. Consumers that eat other animals are predators, and those eaten are prey. In a stable community the numbers of predators and prey rise and fall in cycles. You should be able to interpret graphs used to model these cycles. Required practical activity 9: You should have measured the population size of a common species in a habitat and use sampling techniques to investigate the effect of a factor on the distribution of this species. Food chains, food webs, trophic levels and biomass Biodiversity and ecological surveying - using quadrats and transects 7.2.2 How materials are cycled ('recycled') (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should:
All materials in the living world are recycled to provide the building blocks for future organisms. The carbon cycle returns carbon from organisms to the atmosphere as carbon dioxide to be used by plants in photosynthesis. The water cycle provides fresh water for plants and animals on land before draining into the seas. Water is continuously evaporated and precipitated.
You should be able to explain the role of microorganisms in cycling materials through an ecosystem by returning carbon to the atmosphere as carbon dioxide and mineral ions to the soil. Be able to interpret and explain the processes in diagrams of the carbon cycle, the water cycle. Carbon cycle, nitrogen cycle, water cycle, decomposition - decay investigation, biogas 7.2.3 Decomposition - decomposers (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. You should be able to:
Gardeners and farmers try to provide optimum conditions for rapid decay of waste biological material. The compost produced is used as a natural fertiliser for growing garden plants or crops. Anaerobic decay produces methane gas. Biogas generators can be used to produce methane gas as a fuel. You should have investigated the effect of temperature on the rate of decay of fresh milk by measuring pH change. Carbon cycle, nitrogen cycle, water cycle and decomposition 7.2.4 Impact of environmental change (HT only) (revision study notes for AQA gcse biology) You should be able to evaluate the impact of environmental changes on the distribution of species in an ecosystem given appropriate information. Environmental changes affect the distribution of species in an ecosystem. These changes include:
The changes may be seasonal, geographic or caused by human interaction. Biodiversity, land management, waste management, maintaining ecosystems - conservation Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs and biomass Topic 7.3 Biodiversity and the effect of human interaction on ecosystems 7.3.1 Biodiversity (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) Biodiversity is the variety of all the different species of organisms on earth, or within an ecosystem. A great biodiversity ensures the stability of ecosystems due to the interdependencies of one species on another for food, shelter and the maintenance of the physical environment. Biodiversity helps the stability of ecosystems by reducing the dependence of one species on another for food, shelter and the maintenance of the physical environment. The future of the human species on Earth relies on us maintaining a good level of biodiversity. Many human activities are reducing biodiversity and only recently have measures been taken to try to stop this reduction. Be able to explain how waste, deforestation and global warming have an impact on biodiversity. Biodiversity, land management, waste management, maintaining ecosystems - conservation 7.3.2 Waste management (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) Rapid growth in the human population and an increase in the standard of living mean that increasingly more resources are used and more waste is produced. Unless waste and chemical materials are properly handled, more pollution will be caused. Pollution can occur:
Pollution kills plants and animals which can reduce biodiversity. Biodiversity, land management, waste management, maintaining ecosystems - conservation 7.3.3 Land use (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") Appreciate that humans reduce the amount of land available for other animals and plants by building, quarrying, farming and dumping waste. The destruction of peat bogs, and other areas of peat to produce garden compost, reduces the area of this habitat and thus the variety of different plant, animal and microorganism species that live there (decreasing biodiversity). The decay or burning of the peat releases carbon dioxide into the atmosphere. You need to understand the conflict between the need for cheap available compost to increase food production and the need to conserve peat bogs and peatlands as habitats for biodiversity and to reduce carbon dioxide emissions. Biodiversity, land management, waste management, maintaining ecosystems - conservation 7.3.4 Deforestation (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") (revision study notes for AQA gcse biology) Large-scale deforestation in tropical areas has occurred to:
Be able to evaluate the environmental implications of deforestation eg This destruction of large areas of trees has:
Biodiversity, land management, waste management, maintaining ecosystems - conservation 7.3.5 Global warming (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should be able to describe some of the biological consequences of global warming. Levels of carbon dioxide and methane in the atmosphere are increasing, and contribute to ‘global warming’. You need to understand that the scientific consensus about global warming and climate change is based on systematic reviews of thousands of peer reviewed publications. Be able to explain why evidence is uncertain or incomplete in a complex context. Biodiversity, land management, waste management, maintaining ecosystems - conservation See also from GCSE chemistry notes Fossil fuel air pollution - incomplete combustion, carbon monoxide & soot particulates Pollution, Accidents and Economic Aspects of the Petrochemical Industry Greenhouse effect, global warming, climate change, carbon footprint from fossil fuel burning Fossil fuel air pollution - effects of sulfur oxides and nitrogen oxides 7.3.6 Maintaining biodiversity (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should be able to describe both positive and negative human interactions in an ecosystem and explain their impact on biodiversity. Scientists and concerned citizens have put in place programmes to reduce the negative effects of humans on ecosystems and biodiversity. These include:
Be able to evaluate given information about methods that can be used to tackle problems caused by human impacts on the environment. Be able to explain and evaluate the conflicting pressures on maintaining biodiversity given appropriate information. Biodiversity and ecological surveying - using quadrats and transects, methods of trapping animals Biodiversity, land management, waste management, maintaining ecosystems - conservation Topic 7.4 Trophic levels in an ecosystem (revision study notes for AQA gcse biology) 7.4.1 Trophic levels (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should be able to describe the differences between the trophic levels of organisms within an ecosystem. Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain.
Apex predators are carnivores with no predators. Decomposers break down dead plant and animal matter by secreting enzymes into the environment. Small soluble food molecules then diffuse into the microorganism. Carbon cycle, nitrogen cycle, water cycle and decomposition Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs, trophic levels and biomass 7.4.2 Pyramids of biomass (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") Pyramids of biomass can be constructed to represent the relative amount of biomass in each level of a food chain. Trophic level 1 is at the bottom of the pyramid.
Be able to construct accurate pyramids of biomass from appropriate data. Food chains, food webs, trophic levels and biomass 7.4.3 Transfer of biomass (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should be able to:
Producers are mostly plants and algae which transfer about 1% of the incident energy from light for photosynthesis. Only approximately 10% of the biomass from each trophic level is transferred to the level above it. Losses of biomass are due to:
Large amounts of glucose are used in respiration. You should be able to calculate the efficiency of biomass transfer between trophic levels. You should be able to calculate the efficiency of biomass transfers between trophic levels by percentages or fractions of mass. You should be able to explain how this affects the number of organisms at each trophic level. Carbon cycle, nitrogen cycle, water cycle and decomposition Ecosystems - biotic & abiotic factors - interactions between organisms - interdependency Food chains, food webs and biomass Topic 7.5 Food production (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") 7.5.1 Factors affecting food security (revision study notes for AQA gcse biology) You should be able to describe some of the biological factors affecting levels of food security. Food security is having enough food to feed a population. Biological factors which are threatening food security include:
Sustainable methods must be found to feed all people on Earth. You must be able to interpret population and food production statistics to evaluate food security. Biodiversity, land management, waste management, maintaining ecosystems - conservation Food security - population growth and sustainability issues, issues ways of increasing production 7.5.2 Farming techniques (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") Know the efficiency of food production can be improved by restricting energy transfer from food animals to the environment. This can be done by limiting their movement and by controlling the temperature of their surroundings. eg ‘factory farming’ includes raising battery chickens and calves in pens. Fish grown in cages can be fed high protein food and have restricted movement. Appreciate there are ethical objections to some intensive ‘factory farming’ techniques. Understand that some people have ethical objections to some modern intensive farming methods. Be able to evaluate the advantages and disadvantages of modern farming techniques. Biodiversity, land management, waste management, maintaining ecosystems - conservation Food security - population growth and sustainability issues, issues ways of increasing production 7.5.3 Sustainable fisheries (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") Fish stocks in the oceans are declining. It is important to maintain fish stocks at a level where breeding continues or certain species may disappear altogether in some areas. Control of net size and the introduction of fishing quotas play important roles in conservation of fish stocks at a sustainable level. Understand how application of different fishing techniques promotes recovery of fish stocks. Biodiversity, land management, waste management, maintaining ecosystems - conservation Food security - population growth and sustainability issues, issues ways of increasing production 7.5.4 Role of biotechnology (AQA GCSE Biology 2, Paper 2, Topic 7 "Ecology") You should be able to describe and explain some possible biotechnical and agricultural solutions, including genetic modification, to the demands of the growing human population. Modern biotechnology techniques enable large quantities of microorganisms to be cultured for food. The fungus Fusarium is useful for producing mycoprotein, a protein rich food suitable for vegetarians. The fungus is grown on glucose syrup, in aerobic conditions, and the biomass is harvested and purified. A genetically modified bacterium produces human insulin. When harvested and purified this is used to treat people with diabetes. GM crops could provide more food or food with an improved nutritional value such as golden rice. Food security - population growth and sustainability issues, issues ways of increasing production ALL AQA GCSE (Grade 9-1) Level 1/Level 2 SCIENCES specifications and syllabus revision summary links AQA GCSE (Grade 9-1) BIOLOGY 8461 GCSE BIOLOGY 1st paper 1 (separate science Topics 1-4) AQA GCSE (Grade 9-1) BIOLOGY 8461 GCSE BIOLOGY 2nd paper 2 (separate science Topics 5-7) AQA GCSE (Grade 9-1) CHEMISTRY 8462 GCSE CHEMISTRY 1st Paper 1 (separate science Topics 1-5) AQA GCSE (Grade 9-1) CHEMISTRY 8462 GCSE CHEMISTRY 2nd Paper 2 (separate science Topics 6-10) AQA GCSE (Grade 9-1) PHYSICS 8463 GCSE PHYSICS 1st Paper 1 (separate science Topics 1-4) AQA GCSE (Grade 9-1) PHYSICS 8463 GCSE PHYSICS 2nd Paper 2 (separate science Topics 5-8) Watch out for HT Only sections AND make sure you know exactly which GCSE science course you are doing!
online fashion brands, Abercrombie & Fitch, Old Navy, Free People, Rue 21, Pacsun, Ralph Lauren, Gini & Jony, AQA GCSE 9-1 Biology 1 Paper 1 separate science past exam papers 2018 2019 2020 2021 2022 8461/2F 8461/2H Topics 5 6 7 Homeostasis & response Inheritance, variation & evolution Ecology revision notes United Colors of Benetton, 612 League, Little Kangaroos, Ajio, Nauti Nati, Babyhug, Allen Solly Junior, YK, Next, jobs and opportunities for teenagers best high street shop or best online deals currys pc consumer products computer deals world argos amazon internet deals for students john lewis hobbies and leisure products for teen years AQA GCSE 9-1 Biology 1 Paper 1 separate science past exam papers 2018 2019 2020 2021 2022 8461/2F 8461/2H Topics 5 6 7 Homeostasis & response Inheritance, variation & evolution Ecology revision notes buying the best computer from dell acer samsung raycon best selling footwear fashion bargains for teenagers bose sony asus huawei HP microsoft in-ear headphones earbuds downloadable games ipad desktop computer laptop computer for school college university students educational college university course opportunities for teenagers latest video games consoles apple iphone online download video games for teenagers google high end mobile phones cell phone bargain health products and advice for teenagers smartphone xiaomi computer laptops desktop pc deals for students oppo high tech products jewellery for teenage girls latest fashion in trainers personal care and beauty products for teenagers latest fashion in shoes best selling fashion clothes clothing bargains for teenagers latest fashion in mobile phones cell phones Nintendo games consoles internet music film entertainment deals subscriptions advice on teenage health conditions, ASOS Marketplace, AQA GCSE 9-1 Biology 1 Paper 1 separate science past exam papers 2018 2019 2020 2021 2022 8461/2F 8461/2H Topics 5 6 7 Homeostasis & response Inheritance, variation & evolution Ecology revision notes Levi's, Boohoo, Pretty Little Thing, Misguided, Dorothy Perkins, Debenhams, Boden, John Lewis, Marks and Spencer, Amazon, Oasis, Super Dry, Nasty Gal, G-Star Raw, Burton Snowboards, Ralph Lauren, Timberland, NA-KD, Monki, SamsaraWear, Vans, Calluna, People Tree, Sister Organics, Thought, Tala, AEROPOSTALE – Best Cheap Teenage Clothing. ASOS – Best Designer Teenage Clothing, FOREVER 21 – Best Gender Inclusive Teenage Clothing, YESSTYLE – Best Cute Girls Clothing, JUSTICE – Best Clothing Store For Tweens, PACSUN – Best Trendy Teenage Clothing Store, Best Brand for Formal Dresses: Lulus, Best Workout Brand: Outdoor Voices, Best Purse Brand: JW Pei, AQA GCSE 9-1 Biology 1 Paper 1 separate science past exam papers 2018 2019 2020 2021 2022 8461/2F 8461/2H Topics 5 6 7 Homeostasis & response Inheritance, variation & evolution Ecology revision notes Best Jewelry Brand: En Route Jewelry Most Sustainable Brand: Nuuly, Best Shoe Brand: Dr. Martens, Best Size-Inclusive Option: Girlfriend Collective, H & M, Urban Outfitters, American Outfitters, Target, Lulus, Hollister, Victoria's Secret, Adidas, Forever 21, Nike sports products |
Doc Brown's GCSE biology exam revision Using SEARCH, initial results may be ad links, you can ignore, look for docbrown |
|
![]() |