School Chemistry Notes: All about water of crystallisation

IGCSE AQA GCSE Chemistry A level Edexcel GCSE Chemistry A level OCR Gateway Science Chemistry A level OCR 21st Century Science Chemistry

Doc Brown's chemistry revision notes: GCSE chemistry, IGCSE  chemistry, O level & ~US grades 9-10 school science courses or equivalent for ~14-16 year old students of chemistry Science AQA GCSE chemistry Edexcel GCSE Chemistry OCR 21st Century Chemistry OCR Gateway Chemistry

5. Water of crystallisation in salt crystals

The explanation and calculation of water of crystallisation

Extra Aqueous Chemistry Index:

1. Water cycle, potable water, water treatment, pollution, tests for ions

2. Colloids - sols, foam and emulsions

3. Hard and soft water - causes and treatment 

4. Gas and salt solubility in water and solubility curves

5. Calculation of water of crystallisation (this page)


5. Water of crystallisation calculations

  • What is water of crystallisation?

    • Water of crystallization are the molecules of water that are incorporated into some salt crystals when they are crystallised out of water.

    • e.g. when blue crystals of copper(II) sulfate are crystallized out of water the actual formula of the crystals is ...

    • NOT simply CuSO4, but on crystallisation CuSO4.5H2O is formed,

    • because five water molecules are associated with each 'CuSO4'. in its 'hydrated' crystalline form.

  • Solubility graphs and data are covered in section 4.

  • How to calculate the theoretical % of water in a hydrated salt

    • eg magnesium sulphate MgSO4.7H2O salt crystals

    • Relative atomic masses: Mg = 24, S = 32, O = 16 and H = 1

    • Relative formula mass of water = (2 x 1) + 16 = 18

    • Relative formula mass of MgSO4 = 24 + 32 + (4 x 16) = 120

    • Relative mass of seven water molecules = 7 x 18 = 126

    • Relative formula mass of crystals = MgSO4 + (7 x H2O) = 120 + 126 = 246

    • so % water = 126 x 100 / 246 = 51.2%

  • Determination and calculation of salt formula containing 'water of crystallisation'.

    • Some salts, when crystallised from aqueous solution, incorporate water molecules into the structure. This is known as 'water of crystallisation', and the 'hydrated' form of the compound.

    • e.g. magnesium sulphate MgSO4.7H2O. The formula can be determined by a simple experiment (see the copper sulphate example below).

    • A known mass of the hydrated salt is gently heated in a crucible until no further water is driven off and the weight remains constant despite further heating. The mass of the anhydrous salt left is measured. The original mass of hydrated salt and the mass of the anhydrous salt residue can be worked out from the various weighings.

    • The % water of crystallisation and the formula of the salt are calculated as follows:

      • Suppose 6.25g of blue hydrated copper(II) sulphate, CuSO4.xH2O, (x unknown) was gently heated in a crucible until the mass remaining was 4.00g. This is the white anhydrous copper(II) sulphate.

      • The mass of anhydrous salt = 4.00g, mass of water (of crystallisation) driven off = 6.25-4.00 = 2.25g

      • The % water of crystallisation in the crystals  is 2.25 x 100 / 6.25 = 36%

      • [ Ar's Cu=64, S=32, O=16, H=1 ]

      • The mass ratio of CuSO4 : H2O is 4.00 : 2.25

      • To convert from mass ratio to mole ratio, you divide by the molecular mass of each 'species'

      • CuSO4 = 64 + 32 + (4x18) = 160 and H2O = 1+1+16 = 18

      • The mole ratio of CuSO4 : H2O is 4.00/160 : 2.25/18

      • which is 0.025 : 0.125 or 1 : 5, so the formula of the hydrated salt is CuSO4.5H2O

  • All concentration calculations are covered on the on-line CLICK for GCSE Chemical Calculations calculations page, especially sections 7. on molarity, 11. and 12. on molarity and acid-base (alkali) titrations, section 14.3 on dilutions.

  • GCE A level advanced notes on the structure of hydrated salts


Extra Aqueous Chemistry Index:

1. Water cycle, treatment, pollution  * 

2. Colloids - sols, foam and emulsions  * 

3. Hard and soft water - causes and treatment  * 

4. Gas and salt solubility in water and solubility curves  * 

5. Calculation of water of crystallisation


Doc Brown's School Science Website - KS3 Sciences + GCSE/IGCSE Sciences + Advanced A Level Chemistry
Website content Dr Phil Brown 2000+. All copyrights reserved on revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries & references to science course specifications are unofficial.

 Doc Brown's Chemistry 


best high street shop or best online deals currys pc world combined science trilogy AQA GCSE chemistry revision notes argos amazon john lewis dell acer samsung raycon bose sony asus huawei HP microsoft in-ear headphones earbuds ipad combined science Edexcel GCSE chemistry revision notes desktop computer laptop computer for school college university students Oxford-AQA IGCSE chemistry revision notes latest video games consoles apple iphone google combined science OCR GCSE Gateway Science chemistry A revision notes high end mobile phones cell phone bargain smartphone xiaomi oppo high tech products combined science OCR GCSE Twenty First Century Science chemistry B revision notes latest fashion in trainers OCR Cambridge IGCSE chemistry revision notes latest fashion in shoes latest fashion in mobile phones cell phones Edexcel IGCSE chemistry revision notes