SITEMAP *  HOME PAGE * SEARCH * UK KS3 level Science Quizzes for students aged ~13-14

UK GCSE level BiologyChemistryPhysics ~14-16 * Advanced pre-university Chemistry ~16-18

Part 4g. Methods of increasing food production and improving sustainability

4g. Mycoprotein production - producing protein using fungal growth from added nutrients

Doc Brown's Biology exam study revision notes

There are various sections to work through, after 1 they can be read and studied in any order.

Sub-index of notes on how to increase food production

Sub-index of notes on ALL aspects of food security


4(g) Mycoprotein - another application of biotechnology using fungi

Modern biotechnology techniques can be used to culture and make large quantities of useful microorganisms to produce food.

It is an alternative to producing meat from animals such as cows or chickens.

Mycoprotein is manufactured in huge vats (stainless steel tank fermenters) under very controlled conditions e.g pH, temperature, type of microorganism and nutrient substrates.

Mycoprotein is the ingredient common to all Quorn™ 'artificial meat-free' protein products.

It is a high protein meat substitute for meals acceptable in the diet of vegetarians.

It is high in protein, high in fibre, low in saturated fat and contains no cholesterol, and therefore quite a nutritious component of any diet.

mycoprotein fermenter design labelled explaining diagram biotechnology gcse biology igcse microorganism fungus Fusarium reaction conditionsMycoprotein is made in fermenters (large vats) similar to those found in a brewery - typical design of mycoprotein fermenter is shown in right-hand labelled diagram.

It's made by continuously adding oxygen, nitrogen (from ammonia/nitrate), carbohydrate (e.g. glucose syrup) and essential minerals to a fungus called Fusarium venenatum, which is grown in aerobic conditions.

Nutrients, minerals, fungus and sterile air are fed into the fermenter. The fungus needs oxygen for aerobic respiration. The amino acids and protein are synthesised from glucose syrup and ammonia.

The pH (~6) and temperature (~40oC) are carefully monitored and controlled. A cooling water jacket is needed to remove excess heat - thermostat control.

The stirring paddles ensure the suspended fungus, glucose syrup, ammonia, minerals, oxygen and heat are all continuously evenly distributed throughout the fermenter vat.

The fungus rapidly grows producing the protein which is 'harvested', purified and converted into a safe edible mycoprotein food product.

The Fusarium fungus can double in mass in as little as 5 hours - compare this with how long it takes for grain or cattle to grow.

It is estimated the carbon footprint of mycoprotein is 4x less than that of producing chicken.

Mycoprotein is almost tasteless so a range of textures and flavourings can be added to make it palatable for the human diet.

Mycoprotein seem to have several advantages and no disadvantages except it is tasteless!?


Summary of learning objectives and key words or phrases

  • Know and understand that the fungus Fusarium is useful for producing mycoprotein, a protein-rich food suitable for vegetarians and is a meat substitute eg like the commercial product 'Quorn' (though it does need tasting up a bit!).

    • Know that the fungus is grown on glucose syrup (supplies energy for the process as well as the carbon, hydrogen and oxygen for the protein molecules), in aerobic conditions (air containing oxygen needed), with a source of nitrogen eg ammonia or ammonia compounds (nitrogen is the other important element in amino acids and proteins).

    • Fungi grow rapidly in moist warm conditions so production rates are quite efficient and it doesn't require as much land - though do need sufficient land to the maize from which the glucose syrup is made. When the raw materials have been consumed by the Fusarium fungi the biomass is harvested and purified to be used in various food products.

    • The glucose syrup is made from breaking down maize starch with the appropriate enzyme containing microorganism, though in the mycoprotein production it is important that only the correct microorganism is present to ensure the right biochemistry happens and other microorganisms start multiplying. Therefore all ingredients must be heated and sterilised to kill all microorganisms and the air filtered to remove airborne microorganisms, before the mycoprotein forming fungi are introduced into the fermenter - which itself must be first sterilised with very hot steam.

    • In poor third world countries mycoprotein might be a good efficient substitute for inefficient meat production from animals grazing on large areas of relatively barren infertile land, but is the source of nitrogen from ammonia cheap? I don't think so?


Find your GCSE science course for more help links to revision notes

INDEX of all my BIOLOGY NOTES

SITEMAP Website content © Dr Phil Brown 2000+. All copyrights reserved on Doc Brown's biology revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries and references to science course specifications are unofficial.

Using SEARCH some initial results may be ad links you can ignore - look for docbrown