Revision notes chemical equilibrium - Explaining what a strong acid is & pH calculations

AQA Advanced A level Chemistry Edexcel Advanced A level Chemistry OCR Advanced A level Chemistry A OCR Salters Advanced A level Chemistry B

Doc Brown's Advanced A Level Chemistry Revision Notes - theoretical–Physical Advanced Level Chemistry – Equilibria – Chemical Equilibrium Revision Notes PART 5.3

5.3 Definition of a strong acid, theory, examples and pH calculations of strong acids

What is a strong acid? How to calculate the pH of a strong acid solution given its concentration. What is the real pH of sulfuric acid solutions?

Chemical Equilibrium Notes Parts 5 & 6 Index

5.3 Definition, examples and pH calculations of strong acids

Note: H+(aq) = aqueous hydrogen ion = aqueous proton = oxonium ion = hydroxonium ion

  • 5.3.1 Definition and examples of STRONG ACIDS

    • Strong acids are highly ionised in water, in many cases approaching 100% dissociation into ions.

    • This means for the general reaction of an acid HX interacting in an acid–base manner with water ...

      • HX(aq) + H2O(l) ==> H3O+(aq) + X–(aq)

      • Ka = [H3O+(aq)] [X–(aq)]/[HX(aq)] (units are mol dm–3)

      • Ka the equilibrium constant for this reaction is called the acid dissociation/ionisation constant.

      • [H2O(l)] is considered constant and incorporated into Ka.

      • The high % of ionisation gives the maximum concentration of hydrogen ions and therefore the most acidic solution of lowest possible pH.

      • -

    • In 'strong acid' pH calculations, ionic dissociation is assumed to be 100% and in reality they have very large Ka values and very negative pKa values (pKa = –log(Ka/mol dm–3), compare Ka for weak acids e.g.

      • HCl Ka  ~107 pKa ~–7, HBr Ka  ~109 pKa ~–9, HI Ka  ~1010 pKa ~–10

      • The Ka is so high it is virtually 100% ionised and so the equilibrium sign is pointless and omitted.

      • Note the acid gets stronger down group 7 as the H–X bond enthalpy/strength decreases as the halogen atom gets bigger and the bond length increases.

      • These are all monobasic/monoprotic acids, meaning only one proton is available for transfer to a base, see HCl below, or the conjugate base of the acid can only accept one proton).

      • -

    • 5.3.1a: HCl(g) + H2O(l) ==> H3O+(aq) + Cl–(aq)

      • dissolving hydrogen chloride in water to form hydrochloric acid,

      • or more simply HCl(aq) ==> H+(aq) + Cl–(aq)

      • This has very high equilibrium constant Ka i.e. virtually 100% to the right.

      • The other gases, hydrogen bromide and hydrogen iodide similarly dissolve to form the very strong hydrobromic acid and hydriodic acid respectively.

      • However, hydrogen fluoride gas dissolves in water to form the relatively weak hydrofluoric acid (see 5.4.2d) in dilute solution.

      • -

    • 5.3.1b: HNO3(aq) + H2O(l) ==> H3O+(aq) + NO3–(aq)

      • or the dissociation of dilute nitric acid (monobasic/monoprotic) can be simply shown as

      • HNO3(aq) ==> H+(aq) + NO3–(aq)

      • Ka = 40, pKa = –1.4

      • -

    • 5.3.1c: H2SO4(l) + 2H2O(l) ==> 2H3O+(aq) + SO4(aq)

      • dissolving concentrated sulfuric acid in water to make dilute sulfuric acid (dibasic).

      • or more simply H2SO4(aq) ==> 2H+(aq) + SO4(aq)

      • Strictly speaking the ionization occurs in two stages since it is a dibasic/diprotic* acid

        1. H2SO4(aq) ==> H+(aq) + HSO4–(aq)

          • Ka1 is very high, pKa1 is very negative, when 1st conjugate base formed.

          • So the molecule of sulfuric acid is a VERY strong acid.

        2. HSO4–(aq) (c) doc b H+(aq) + SO4(aq)

          • Ka2 =  1.20 x 10–2 mol dm–3, pKa2 = 1.92, positive, when 2nd conjugate base formed.

          • Strictly speaking, ionisation 2. is incomplete, but is often ignored in AS–A2 level calculations.

          • So, H2SO4 is a strong acid but the first conjugate based formed, the hydrogensulfate ion, HSO4– is a weak acid!

      • *Dibasic/diprotic means a maximum of two protons per molecule are available for transfer to a base, or the 2nd conjugate base of the acid can accept two protons. (See section 5.1.3 for more examples)

      • -

    • See 5.3 for a brief comparison of selected weak/strong acid properties

    • -

  • 5.3.2 Calculating the pH of a strong acid

    • Calculation example 5.3.2a

      • (a) Calculate the hydrogen ion concentration and pH of a 0.25 mol dm–3 solution of hydrochloric acid.

        • HCl is monobasic/monoprotic acid, so [H+(aq)] = 0.25 mol dm–3

        • pH = –log(0.25) = 0.602

        • -

    • Calculation example 5.3.2b

      • (a) Calculate the hydrogen ion concentration and pH of a 1.5 mol dm–3 solution of sulfuric acid.

        • H2SO4 is dibasic/diprotic acid, so [H+(aq)] = 2 x 1.5 = 3.0 mol dm–3

          • This isn't strictly true, the 1st ionisation is 100%, but the ionisation of the hydrogensulfate ion to release the 2nd proton is not complete, but 100% ionisation is assumed at this academic level.

        • pH = –log(3.0) = –0.477

        • but in reality the ph will be higher (see above discussion on the double ionisation of sulfuric acid and the calculation in appendix 1 at the bottom of the page).

        • -

    • Calculation example 5.3.2c

      • Calculate the hydrogen ion concentration solution of hydrochloric acid of pH 1.2

      • [H+(aq)] = 10–pH = 10–1.2 = 0.0631 mol dm–3

    • –

Appendix 1. What is the real aqueous hydrogen ion concentration in dilute sulfuric acid?

To fully understand this calculation its handy to have studied the weak acid calculations page.

e.g. take 0.500 molar H2SO4 (aq), if fully ionised, you would expect ...

the [H+(aq)] concentration to be 2 x 0.500 = 1.000 mol dm–3

and the pH to be –log10(1.000) = 0.00

BUT, what is the reality?

The 1st dissociation is virtually complete: H2SO4(aq) ==> H+(aq) + HSO4–(aq)

Ka1 =

[H+(aq)] [HSO4–(aq)]

–––––––––––––––    =   VERY LARGE


and will provide an initial concentration of 0.500 mol dm–3 of hydrogen ions.

The 2nd ionisation HSO4–(aq) (c) doc b H+(aq) + SO4(aq) is not complete,

The hydrogensulfate ion is a weak acid, but will still provide further hydrogen ions, which can be calculated via a weak acid calculation using the equilibrium expression below.

Ka2 =

[H+(aq)] [SO42–(aq)]

–––––––––––––––    =   1.20 x 10–2 mol dm–3


Prior to the 2nd ionisation, theoretically, the initial concentrations of hydrogensulfate ions and hydrogen ions will be equal, and both 0.500 mol dm–3.

On the 2nd ionisation, the hydrogensulfate ion will provide the extra hydrogen ions and the only sulfate ions, but in doing so, the hydrogensulfate ion is reduced.

If we call the 'equal' extra hydrogen ion concentration and the final sulfate ion concentration x, then the total hydrogen ion concentration is (0.5 + x) and the hydrogensulfate ion concentration is reduced to (0.5 – x)

1.20 x 10–2 =

     (0.5 + x) x


     (0.5 – x)

This gives the quadratic equation 0 = x2 + 0.512x – 0.006

On solving this using the quadratic equation formula, gives roots of –0.523 and +0.0114

Therefore x must be 0.0114 (the 'extra' H+), which then gives (0.5 + 0.0114) ...

a total hydrogen ion concentration [H+(aq)] of 0.511 mol dm–3, not 1.000 mol dm–3

and the real calculated pH = –log10(0.511) = 0.29, not pH 0.00 and significantly higher.

You may think the extra hydrogen ion concentration is very low, but this is because the HSO4– ion is a weak acid AND the 2nd ionisation is actually heavily suppressed by the 1st ionisation – think Le Chatelier's equilibrium principle as regards the concentration effect.

To fully understand this calculation its handy to have studied the weak acid calculations page.

Chemical Equilibrium Notes Parts 5 & 6 Index


KS3 BIOLOGY QUIZZES ~US grades 6-8 KS3 CHEMISTRY QUIZZES ~US grades 6-8 KS3 PHYSICS QUIZZES ~US grades 6-8 HOMEPAGE of Doc Brown's Science Website EMAIL Doc Brown's Science Website
GCSE 9-1 BIOLOGY NOTES GCSE 9-1 CHEMISTRY NOTES and QUIZZES GCSE 9-1 PHYSICS NOTES GCSE 9-1 SCIENCES syllabus-specification help links for biology chemistry physics courses IGCSE & O Level SCIENCES syllabus-specification help links for biology chemistry physics courses
Advanced A/AS Level ORGANIC Chemistry Revision Notes US K12 ~grades 11-12 Advanced A/AS Level INORGANIC Chemistry Revision Notes US K12 ~grades 11-12 Advanced A/AS Level PHYSICAL-THEORETICAL Chemistry Revision Notes US K12 ~grades 11-12 Advanced A/AS Level CHEMISTRY syllabus-specificatio HELP LINKS of my site Doc Brown's Travel Pictures
Website content © Dr Phil Brown 2000+. All copyrights reserved on revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries & references to science course specifications are unofficial.

Chemical Equilibrium Notes Parts 5 & 6 Index

 Doc Brown's Chemistry 


best gift deals latest video game release, best gift deals best bargains in shop sales latest pop music releases, best sales deals download free music, latest film releases, best gifts for teenagers latest high street fashion in clothes, fashionable trending in clothing, best gift deals best bargains in shop salesgirls buy clothes, spend a lot of money on clothes, best sales deals shoes, sweets and chocolates, magazines and make-up best gifts for teenagers Boys buy food and drink, computer games best gift deals best bargains in trainers shop sales DVDs and CDs, girls and boys spend a lot of money on credit for mobile phones best sales deals best bargains in shop sales buses and trains to transport them going out best gifts for teenagers best bargains in shoes shop sales Girls spend a lot of money on clothes best gift deals color colour preferences in clothes, cool sunglasses best sales deals boys buy expensive thins like best gifts for teenagers designer sports clothes and trainers, teenagers save for holidays, best sales deals clothes, mobile phones, birthday presents and electronic goods, teenage accessories, Favourite style of jeans. best gifts for teenagers A typical girl’s shopping list includes mobile phone credit deals best shoes gift deals fashionable quality cool airpods, air pods, fashionable clothes best sales deals the most popular favourite sneakers best gifts for teenagers fancy shoes, sweets, chocolates, magazines, best trainers gift deals best bargains in shop sales lip moisturizer best bargains in  shop sale slots on make-up, well being, teenage decor decorating their room best sales deals teenagers like LED string lantern lights, best gifts for teenagers beauty products for teenagers, denim jackets, scrunchies coolness, fashionable back packs, typical boy’s shopping list includes mobile credit deals, eating out takeaway food and drinks, what teenagers like to buy in clothes best gifts for teenagers computer games, DVDs, CDs, what teenagers talk about best gift deals what teenagers worry about, what teenagers like to do for fun sports best sales deals what cool things do teenagers buy, resale websites like eBay Teenager best high street shop or best online deals currys pc world argos amazon john lewis dell acer samsung raycon bose sony asus huawei HP microsoft in-ear headphones earbuds ipad desktop computer laptop computer for school college university students latest video games consoles apple iphone google high end mobile phones cell phone bargain smartphone xiaomi oppo high tech products latest fashion in trainers latest fashion in shoes latest fashion in mobile phones cell phones