

GCSE Physics Equation Sheet

1	pressure due to a column of liquid $= height \ of \ column \ \times \ density \ of \ liquid \ \times \ gravitational \ field \ strength \ (g)$	$p = h \rho g$
2	(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 a s$
3	$force = \frac{change in momentum}{time taken}$	$F = \frac{m \Delta v}{\Delta t}$
4	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E_e = \frac{1}{2} k e^2$
5	change in thermal energy = mass \times specific heat capacity \times temperature change	$\Delta E = m \ c \ \Delta \theta$
6	$period = \frac{1}{frequency}$	
7	$magnification = \frac{image \ height}{object \ height}$	
8	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density \times current \times length	F = B I l
9	thermal energy for a change of state $=$ mass \times specific latent heat	E = m L
10	$\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$
11	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_s I_s = V_p I_p$
12	For gases: pressure × volume = constant	p V = constant