Doc Brown's Chemistry  

Advanced Level Inorganic Chemistry Periodic Table Revision Notes

Transition Metals

Appendix 10 Extended 3d–block data table

A collection of data sets on the properties of the 3d–block metals including the 1st series of transition metals

(c) doc b GCSE/IGCSE Periodic Table Revision Notes

 (c) doc b GCSE/IGCSE Transition Metals Revision Notes

INORGANIC Part 10 3d block TRANSITION METALS sub–index: 10.1–10.2 Introduction 3d–block Transition Metals * 10.3 Scandium * 10.4 Titanium * 10.5 Vanadium * 10.6 Chromium * 10.7 Manganese * 10.8 Iron * 10.9  Cobalt * 10.10 Nickel * 10.11 Copper * 10.12 Zinc * 10.13 Other Transition Metals e.g. Ag and Pt * Appendix 1. Hydrated salts, acidity of hexa–aqua ions * Appendix 2. Complexes & ligands * Appendix 3. Complexes and isomerism * Appendix 4. Electron configuration & colour theory * Appendix 5. Redox equations, feasibility, Eø * Appendix 6. Catalysis * Appendix 7. Redox equations * Appendix 8. Stability Constants and entropy changes * Appendix 9. Colorimetric analysis and complex ion formula * Appendix 10 3d block – extended data * Appendix 11 Some 3d–block compounds, complexes, oxidation states & electrode potentials * Appendix 12 Hydroxide complex precipitate 'pictures', formulae and equations

Advanced Level Inorganic Chemistry Periodic Table Index * Part 1 Periodic Table history * Part 2 Electron configurations, spectroscopy, hydrogen spectrum, ionisation energies * Part 3 Period 1 survey H to He * Part 4 Period 2 survey Li to Ne * Part 5 Period 3 survey Na to Ar * Part 6 Period 4 survey K to Kr and important trends down a group * Part 7 s–block Groups 1/2 Alkali Metals/Alkaline Earth Metals * Part 8  p–block Groups 3/13 to 0/18 * Part 9 Group 7/17 The Halogens * Part 10 3d block elements & Transition Metal Series * Part 11 Group & Series data & periodicity plots * All 11 Parts have their own sub–indexes near the top of the pages


Appendix 10 Extended DATA TABLE Extended SUMMARY FOR 3d BLOCK & TRANSITION METALS

Z and symbol 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn
property\name scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc
melting pt./oC 1541 1668 1910 1857 1246 1538 1495 1455 1083 420
boiling pt./oC 2836 3287 3380 2672 1962 2861 2870 2730 2567 907
density/gcm–3 2.99 4.54 6.11 7.19 7.33 7.87 8.90 8.90 8.92 7.13
1st IE/kJmol–1 631 658 650 653 717 759 760 737 745 906
2nd IE/kJmol–1 1235 1310 1414 1592 1509 1561 1646 1753 1958 1733
3rd IE/kJmol–1 2389 2652 2828 2987 3248 2957 3232 3393 3554 3832
4th IE/kJmol–1 7089 4175 4507 4740 4940 5290 4950 5300 5326 5730
5th IE/kJmol–1 8844 9573 6294 6690 6990 7240 7670 7280 7709 7970
Z and symbol 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn
atomic radius/pm 161 145 132 125 124 124 125 125 128 133
M2+ ionic radius/pm  na 90 88 84 80 76 74 72 69 74
Relative polarising power M2+ ion na 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.7
M3+ ionic radius/pm 81 76 74 69 66 64 63 62 na na
Relative polarising power M3+ ion 3.7 3.9 4.1 4.3 4.5 4.7 4.8 4.8 na na
M4+ ionic radius/pm na 68 60 56 54 na na na na na
Polarising power M4+ ion na 5.9 6.7 7.1 7.4 na na na na na
Z and symbol 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn
oxidation states, less common/stable +3 only +2,+3,+4 +2,+3,+4,+5 +2,+3,+6 +2,+3,+4,+6,+7 +2,+3 +2,+3 +2,+3 +1,+2 +2 only
simplified electron configuration 2,8,9,2 2,8,10,2 2,8,11,2 2,8,13,1 2,8,13,2 2,8,14,2 2,8,15,2 2,8,16,2 2,8,18,1 2,8,18,2
outer electrons 3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2
Electrode pot'l M(s)/M2+(aq) na –1.63V –1.18V –0.90V –1.18V –0.44V –0.28V –0.26V +0.34V –0.76V
Electrode pot'l M(s)/M3+(aq) –2.03V –1.21V –0.85V –0.74V –0.28V –0.04V +0.40 na na na
Electrode pot'l M2+(aq)/M3+(aq) na –0.37V –0.26V –0.42V +1.52V +0.77V +1.87V na na na
Electronegativity 1.36 1.54 1.63 1.66 1.55 1.83 1.88 1.91 1.90 1.65
Z and symbol 21  Sc 22  Ti 23  V 24  Cr 25  Mn 26  Fe 27  Co 28  Ni 29  Cu 30  Zn
  • Advanced Inorganic Chemistry Page Index and Links3d block data notes:
    • Atomic and ionic radii are quoted in pm (1 picometre, 10–12 m), 1000 pm = 1 nm (1 nanometre = 10–9 m)
    • na means 'not applicable' or 'not available'.
    • The electronegativity values are from the Pauling scale.
    • Redox potentials
    • Ionic radii relate to the 'isolated' theoretical ion, NOT the hydrated aqueous ion.
    • Polarizing power is a measure of the ions charge density which has important chemical consequences e.g.
      • the bonding nature of metals with non–metals e.g. an ionic or a covalent MCln
      • and the acidity of the hydrated aqueous ion [M(H2O)6]n+(aq) which is capable of donating protons.
    • The ion charge divided by the ionic radius of the 'isolated ion' is a 'reasonable' number scale for easy comparison of polarising power, and in the tables I've multiplied the charge/radius by 100 to make a suitable scale.
      • Obviously, the larger the charge, or the smaller the volume or radius, the greater the charge density or polarising power, this in turn leads to more covalent character in the e.g. chloride and increased acidity of the hexa–aqua–ion [M(H2O)6]n+(aq). that is with increase in the n+ value.
    • Note that as the oxidation state of the transition metal increases,
      • i.e. increase in charge if an ionic compound, the greater the polarising power of the cation, which increases the covalent character of the compound, exemplified by comparing iron(II) and iron(III) compounds or complex ions
        • e.g. FeCl2 is essentially an ionic compound and FeCl3 is covalent in character,
      • the greater the polarising power of the central metal ion, the greater the acidity of the hexaaqua ion
        • e.g. [Fe(H2O)6]3+ is more acidic than [Fe(H2O)6]2+
          • Going from iron(II) to iron(III) involves an increases in cationic positive charge and decrease in radius of the 'isolated' central metal ion.
          • The decrease in radius is bound to result from the same nuclear charge of 26+ 'pulling in' 24 and 23 electrons respectively,
          • i.e. less electron density in the same quantum level, less space occupied.
          • For more details see Transition Metals Appendix 1 Acidity of hexaaqua–ions
      • Relative polarising power of Groups 1–3 ions for comparison with the 3d block ions above:
      • Group of the Periodic Table Metal ion and ionic charge ionic radius/pm relative polarizing power = 100 x charge / radius
        1 Na+ 98 1.0
        2 Mg2+ 78 2.6
        3 Al3+ 60 5.0
        1 K+ 133 0.75
        2 Ca2+ 106 1.9
      • Note the substantial increase in polarizing power of the cations across Period 3 from sodium to aluminium as the ion charge increases and the ionic radius decreases. From the data from Groups and 1 and 2 you can see the polarising power of similarly charged cation decreases down a group as the ionic radius increases.


Scandium * Titanium * Vanadium * Chromium * Manganese * Iron * Cobalt * Nickel * Copper * Zinc * Silver & Platinum

Introduction 3d–block Transition Metals * Appendix 1. Hydrated salts, acidity of hexa–aqua ions * Appendix 2. Complexes & ligands * Appendix 3. Complexes and isomerism * Appendix 4. Electron configuration & colour theory * Appendix 5. Redox equations, feasibility, Eø * Appendix 6. Catalysis * Appendix 7. Redox equations * Appendix 8. Stability Constants and entropy changes * Appendix 9. Colorimetric analysis and complex ion formula * Appendix 10 3d block – extended data * Appendix 11 Some 3d–block compounds, complexes, oxidation states & electrode potentials * Appendix 12 Hydroxide complex precipitate 'pictures', formulae and equations

ALPHABETICAL SITE INDEX for chemistry     

For latest website updates see https://twitter.com/docbrownchem