Doc Brown's Advanced A Level Organic Chemistry Revision Notes - Help in Revising Advanced Organic Chemistry

PART 14 ORGANIC ISOMERISM and Stereochemistry Revision Notes

Part 14.2 Organic Stereoisomerism - Introduction and E/Z isomerism

(was called cis-trans, geometric or geometrical isomerism)

E/Z stereoisomerism is explained and examples of E/Z isomers fully described including how to name them and assign the E or Z prefix to the specific isomer name. Case studies are described covering the molecular structure of the E/Z isomers, how to name them and explaining any differences in physical and chemical properties. A few details of differences in physical and chemical properties are pointed out where it seems appropriate. Note for simple cases modern E = old trans isomers AND modern Z = old cis isomers. Cis and trans notation is still to be found in older textbooks and even some contemporary literature.

Case studies are discussed concerning structure, naming, formation, properties and stereochemical consequences of E/Z isomerism


INDEX of isomerism & stereochemistry of organic compounds notes



 

14.2 to 14.6 Stereoisomerism-Stereochemistry - Definition and Introduction

Stereoisomerism  occurs when two or more molecules have identical molecular formula AND the same structural formula (i.e. the atoms are arranged in the same order), BUT differ in their 2D or 3D spatial arrangements of their bonds - which means different spatial arrangement of the atoms - even though they are bonded in the same order!

There are two main sub-divisions of stereoisomerism:

(a) E/Z isomerism (cis/trans geometrical, in specific cases E = trans, Z = cis isomers)

(b) R/S optical isomerism.

A 3rd section (c), looks at other stereochemical examples which do not readily fit into (a) or (b). However, before these sections, you need to read to know about 'priority rules' to assign the correct nomenclature to any absolute stereoisomer configuration.

(a) Configuration rules   (b) E/Z Isomerism (was geometrical cis/trans)  (separate page) R/Z Optical Isomerism

14.2(a) Priority Rules for designating the precise isomer configuration in stereoisomerism

In order to specify exactly which stereoisomer you are referring to in e.g. E/Z (geometrical/geometric isomerism) and R/S optical isomerism (molecules exhibiting chirality) you need rules to account for the different groups of atoms. These are known as the Cahn-Ingold-Prelog priority sequence rules and their importance can only be fully understood when dealing with the isomerisms described in sections E/Z Isomerism and R/S optical Isomerism. A brief description of the first two rules are given below, which is all you need for pre-university courses.

Below is an explanation of how to apply the Cahn-Ingold-Prelog priority rules devised in the 1960s by Robert Cahn, Chris Ingold and Vladimir Prelog and now accepted by the IUPAC nomenclature system for naming isomers.

When dealing with a C-X bond grouping, the priority of X is given by ....

Sequence priority Rule 1: The higher the atomic number of an atom the higher the priority it is assigned.

e.g. for typical non-metals ZX (Z = proton/atomic number) encountered in organic compounds ...

X =  53I > 35Br > 17Cl > 16S > 15P > 8O > 7N > 6C > 1H

Sequence priority Rule 2: If the relative priority of two groups cannot be decided by Rule 1, it shall be determined by applying Rule 1 to the next atom or sequence of atoms in the group 'X'.

e.g. for typing groupings in organic molecules where X is more than one atom ....

X =   -CH2CH2CH3 > -CH2CH3 > -CH3 > -H i.e. the longer the hydrocarbon carbon chain the higher its priority,

in terms of atomic numbers we are dealing with: 6C6C6C > 6C6C > 6C > 1H

and a more varied situation where from 1-3 atoms in the X sequence must be considered .... X =

-I > -Br > -Cl > -CH2Br > -CH2Cl > -CH2-O-CH3 > -CH2-O-H > -CH2CH2Br > -CH2CH2Cl > -CH2CH3 > -CH3 > -H

and presenting a similar sequence, but emphasising atoms which actually decide the priority from rules 1 & 2

atom priority sequence: -I > -Br > -Cl > -C-Br > -C-Cl > -C-O-C > -C-O-H > -C-C-Br > -C-C-Cl > -C-C-H > -C-H > -H

These two rules will be applied below in the case of geometrical isomers (now described as E/Z notation) and optical isomers (R/S notation for enantiomers) and this rules section will be referred back to as examples of these isomerisms are described.

Please note that for UK pre-university chemistry courses, no detailed knowledge of the Cahn-Ingold-Prelog priority sequence rules is expected and in many cases just knowing -H has the lowest priority is sufficient to assign the E or Z isomer in E/Z stereoisomerism and I don't think the R/S notation for optical stereoisomerism is needed for any UK based pre-university course except Cambridge pre-U chemistry?

Apart from the two sequence priority rules above which also apply to R/S optical isomerism, the specific E/Z isomerism positional assignment rule is as follows, and essential for understanding the rest of the page and is actually quite simple to apply!

For each pair of substituent groups on each carbon of the C=C double bond you need to assign a higher and lower priority based on the atomic number or sequence of atomic numbers (as described above).

Several examples are described below following on from a simple schematic representation of the E/Z positional assignment rule of higher and lower priority based on the two sequence rules explained above.

Atomic numbers: H = 1, C =12, Cl = 17, Br = 35 for the two particular E/Z isomerism examples below.

 

(a) If the two highest priority groups are on the same side of the >C=C< bond network planarity that gives you the Z isomer (cis in limited cases). So, in terms of higher and lower priorities, for the Z isomer we have ...

higher

     

higher

  \   /  
    C=C    
  /   \  

lower

     

lower

Z isomer rule

was called cis in old notation for '1,2' disubstituted alkenes

Cl

     

Cl

  \   /  
    C=C    
  /   \  

H

     

H

Z-1,2-dichloroethene

cis-1,2-dichloroethane

priority 17Cl > 1H

CH3CH2

     

Br 

  \   /  
    C=C    
  /   \  

CH3

     

Cl

Z-1-bromo-1-chloro-2-methylbut-1-ene

left priority 6C6C > 6C (CH3CH2 > CH3)

and on the right carbon 35Br > 17Cl

Or you can say the two lowest priority atoms/groups are on the same side of the plane of the double bond >C=C<

 

(b) If the two highest priority groups are diagonally on opposite sides of the >C=C< bond network planarity, that gives you the E isomer (trans in limited cases). So, in terms of higher and lower priorities, for the E isomer we have ...

higher

     

lower

  \   /  
    C=C    
  /   \  

lower

     

higher

E isomer rule

was called trans in old notation for '1,2' disubstituted alkenes

Cl

     

H

  \   /  
    C=C    
  /   \  

H

     

Cl

E-1,2-dichloroethene

trans-1,2-dichloroethane

priority 17Cl > 1H

CH3CH2

     

Cl

  \   /  
    C=C    
  /   \  

CH3

     

Br

E-1-bromo-1-chloro-2-methylbut-1-ene

left priority 6C6C > 6C (CH3CH2 > CH3)

and on the right carbon 35Br > 17Cl

Or you can say the two lowest priority atoms/groups are diagonally on the opposite sides of the plane of the double bond >C=C<.

 

Note that the terms cis and trans are usually applied only to where there are only two substituents like cis/trans 1,2-dichloroethene (above) and cis/trans but-2-ene described below, BUT you must know how to use the E/Z rules and correctly designate the E or Z isomer.


 

14.2(b) E/Z Stereoisomerism (geometrical - cis/trans isomerism) - examples in applying the assignment rules

NOTE: The IUPAC recommend that the term geometrical/geometric isomerism is NOT used  but to use the stereoisomerism classification E/Z stereoisomerism or E-Z isomerism. The E/Z notation is replacing the limited cis/trans notation in assigning names to a particular stereoisomer. However cis/trans nomenclature is in widespread use so it will be acknowledged in parallel with the E/Z convention where appropriate.

Geometric E/Z (trans/cis) isomers are molecules that are fixed into their spatial positions with respect to one another due to e.g. a double bond, a ring structure and often involving and due to a planar arrangement of atoms (which doesn't have to involve a double bond or ring). Typical examples are seen in alkenes, cyclic hydrocarbons, and square planar complexes in transition metals.

In molecules of the same molecular formula, exhibit E/Z stereoisomerism, spatially different molecules (E/Z isomers) exist because of the inhibited/restricted rotation about at least one bond due to too high an energy requirement (don't say rotation is impossible, but it is the high energy barrier that causes the existence of two distinct isomers!).

A simple example: but-2-ene alkenes structure and naming (c) doc b

The E (trans) (c) doc b, alkenes structure and naming (c) doc band the

Z (cis) (c) doc b, alkenes structure and naming (c) doc b, forms of but-2-ene

However, in order for E/Z stereoisomers to exist there must be two different atoms/groups attached to both carbon atoms of the C=C carbon carbon double bond (see diagram below) or two adjacent carbons in a substituted cycloalkane. This is why but-1-ene cannot exhibit E/Z isomerism, but it is a structural isomer of the E/Z isomers of but-2-ene.

The three most common situations you are likely to encounter are >C=C< or a >C=N- double bond and around a C-C single bond in cycloalkanes. In both cases the energy required is too high to allow free rotation around the double bond BUT free rotation is possible around single bonds (C-C, C-O etc.) e.g. alkyl groups around the C-C single bonds in non-cyclo linear/branched alkanes.

If two identical atoms/groups are attached to the same carbon atom of a C=C double bond, you cannot have geometrical isomers e.g. those with R2C=C< or R2C=N- where R = R. See the diagram below.

The 'old' nomenclature term cis often means the same substituents are on the same side of the double bond and trans when they are on opposite sides. Under the E/Z notation cis is now Z and trans is now E. In a sense cis/trans isomers were a special case of a substituent and a hydrogen atom on each carbon of the C=C double bond. E/Z configuration assignment is absolutely necessary when there 3 or 4 different substituents on the C=C group (again, see the diagram below)

Introductory exemplar diagrams to illustrate whether E-Z isomers can exist or not and how to use the modern E/Z isomerism notation-designation-assignment of absolute configuration.

Diagram explaining E/Z isomerism (old cis/trans) configuration nomenclature

Lower left example: (E)-1-bromo-1-chloropropene and (Z)-1-bromo-1-chloropropane

Lower right example: E-3-methylpent-2-ene and Z-3-methylpent-2-ene (repeated further down with skeletal formulae)

To understand the two lower left and right examples apply the Priority Rules to alkenes for E/Z ('geometrical') isomerism:

For each carbon of the double bond the higher priority atom/group is worked out.

The Z isomer is where both highest priority groups are on the same side of the double bond (includes all cis configurations of the old convention).

The E isomer is where the two highest priority atoms/groups are diagonally opposite each other on different sides of the plane of the double bond system (includes all trans isomers of the old convention).

(Note: In terms of the two highest priority atoms or groups, E, 'on opposite sides', comes from the German word entgegen, meaning 'opposite' and the Z 'on the same side' comes from the German word zusammen meaning 'together')

3-methylpent-2-ene, alkenes structure and naming (c) doc b can be drawn as E/Z isomers using structural and skeletal formula

 alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b, E-3-methylpent-2-ene

and   alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b Z-3-methylpent-2-ene

Note the priority order CH3CH2 > CH3 > H from the Cahn-Ingold-Prelog priority rules

 


Other alkene hydrocarbon examples of E/Z isomerism

the E/Z isomers of alkenes structure and naming (c) doc b

Z-hept-2-ene alkenes structure and naming (c) doc band E-hept-2-ene (c) doc b (cis and trans hept-2-ene)

 

and the E/Z isomers of alkenes structure and naming (c) doc b

E-3-methylhex-3-ene    and    Z-3-methylhex-3-ene

Cahn-Ingold-Prelog priority rule:  CH3CH2 > CH3 > H

 

 

4-methylpent-2-ene, alkenes structure and naming (c) doc b, has E/Z isomers:

Z/cis- alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b, E/trans- alkenes structure and naming (c) doc b ,

Cahn-Ingold-Prelog priority rule: (CH3)2CH- > CH3- > H-

 

 

3,4-dimethylpent-2-ene, alkenes structure and naming (c) doc b

has two E/Z isomers: E-3,4-dimethylpent-2-ene alkenes structure and naming (c) doc b , and Z-3,4-dimethylpent-2-ene alkenes structure and naming (c) doc b

Cahn-Ingold-Prelog priority rule: (CH3)2CH- > CH3- > H-

 

4,4-dimethylpent-2-ene, alkenes structure and naming (c) doc b  E/Z isomers:

Z/cis- alkenes structure and naming (c) doc b, and E/trans- alkenes structure and naming (c) doc b

Cahn-Ingold-Prelog priority rule: (CH3)3CH- > CH3- > H-

 

 

3-ethylpent-2-ene, alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b 

no E/Z isomers because there are two identical (ethyl) groups attached to the same (left) carbon of the double bond

 

 

Hex-2-ene, alkenes structure and naming (c) doc b

Z-hex-2-ene/cis-hex-2-ene alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b, and

E-hex-2-ene/ trans-hex-2-ene, alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b

Cahn-Ingold-Prelog priority rule: CH3CH2CH2- > CH3- > H-

 

 

hept-3-ene, alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b

has two E/Z isomers: Z-hept-3-ene/cis-hept-3-ene alkenes structure and naming (c) doc b

and E-hept-3-ene/trans-hept-3-ene alkenes structure and naming (c) doc b

Cahn-Ingold-Prelog priority rule: CH3CH2CH2- > CH3CH2- > H-

 


Case studies: 2a.1 C4H82a.2 HOOC-CH=CH-COOH * 2a.3 ClCH=CHCl

2a.4 di-substituted cycloalkanes * 2a.5 azo (-N=N-) and R2C=N-X compounds * 2a.6 Dienes


 

Case study 2a.1 Isomers of C4H8, cis/trans or Z/E-but-2-ene

Priority order: -CH3 > H (since at. no. of 6 > 1 for hydrogen)

(1) Z-but-2-ene (cis) (bpt 4oC) (c) doc b , alkenes structure and naming (c) doc b, (Z-2-butene)

The Z isomer has the two highest priority groups on the same side of the plane of the C=C double bond.

(2) E-but-2-ene (trans) (bpt 1oC)(c) doc b, alkenes structure and naming (c) doc b, (E-2-butene)

The E isomer has the two highest priority groups on opposite sides of the carbon = carbon double bond.

(1) and (2) are very similar physically (e.g. colourless gases and very low bpt) and chemically (e.g. alkene electrophilic addition reactions).

Note that there are four other physically similar isomers of C4H8 namely, (3) 2-methylpropene (bpt -7oC, chain isomer), (4) but-1-ene (bpt -6oC, position of C=C isomer), (5) methylcyclopropane and (6) cyclobutane (bpts 5oC and 13oC, 5 and 6 are alkane functional group isomers of alkenes 1 to 4), BUT non of (3) to (6) can form geometrical isomers. (3) and (4) would be chemically similar to (1) and (2) being alkenes, but (5) and (6) have no 'alkene' chemistry but just the limited chemistry of alkanes e.g. uv chlorination as well as the combustion, which they all readily undergo!

Similarly ...

alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b, E-3-methylpent-2-ene

and   alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b Z-3-methylpent-2-ene

BUT alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b 2-methyl-2-pentene does NOT exhibit E/Z isomerism because two identical (CH3) groups are attached to the same carbon atom of the double bond.

and

4,4-dimethylpent-2-ene, alkenes structure and naming (c) doc b  has two E/Z isomers:

Z-4,4-dimethylpent-2-ene alkenes structure and naming (c) doc b (cis), and E-4,4-dimethylpent-2-ene alkenes structure and naming (c) doc b (trans)


 

Case study 2a.2 trans/cis or Z/E-but-2-ene-1,4-dioic acid, HOOC-CH=CH-COOH

(butenedioic acids, old names given below). Substituent group priority -COOH > H

On heating the trans form (1) fumaric acid)(c) doc b now called E-but-2-ene-1,4-dioc acid, it proves difficult to change it into the cyclic anhydride (3) below.

Z-but-2-ene-1,4-dioc acid (2)cis form, maleic acid(c) doc b (c) doc b (3)(c) doc b  + H2O

However, if the Z(cis) form (2) is heated, it readily changes into the cyclic acid anhydride (3). Not only does the restricted rotation about the C=C bond cause the existence of geometrical isomers, but in this case you can only readily get the elimination of water when the two -OH groups are on the same side of the planar >C=C< system, as in the cis form (2). In the trans form (1) the elimination reaction is stereochemically hindered because the -OH so far apart. However, both (1) and (2) undergo the same electrophilic addition reactions of the 'alkene' double bond, >C=C< and the same reactions of the carboxylic acid group -COOH.

Some physical differences.

*Sometimes the trans isomer has the higher symmetry and packs more closely into a crystal lattice, increasing the intermolecular forces, and this tends to increase melting points and density but decrease solubility as solvation is not as energetically favourable. (* unfortunately, there seem to be many exceptions to this 'rough rule of thumb', so beware).

(1) The trans form: d = 1.64 gcm-3, solubility in water 0.7g/100 cm3 at 25 oC, melting point 287 oC, 

(2) The cis form: d = 1.59 gcm-3, solubility in water 78.8g/100 cm3 at 25 oC, melting point 130 oC,


 

Case study 2a.3 Physical properties of cis/trans or Z/E-1,2-dichloroethene

The Cδ+-Clδ- bond is polar due to the difference in electronegativity between carbon and chlorine (Cl > C).

(1) Z-1,2-dichloroethene (cis) (c) doc b d = 1.265cm-3, mpt -80 oC, bpt 60 oC, dipole moment 1.89D, with both Cl's on the same side of the C=C bond, the combined effect of the two polar C-Cl bonds makes it a much more polar molecule and raises the bpt compared to (2), but not the mpt (not sure why, subtlety of the crystal structure?).

Cahn-Ingold-Prelog priority rule:  17Cl > 1H

(2) E-1,2-dichloroethene (trans) (c) doc b  d = 1.259cm-3, mpt -50 oC, bpt 48 oC, dipole moment 0.00D, the effect of the C-Cl polar bonds cancel each other out giving a relatively non-polar molecule,

and there is positional isomer (3) shown below.

(3) (c) doc b d = 1.218 cm-3, mpt -? oC, bpt 32 oC, dipole moment 1.30D?, 1,1-dichloroethene, is a positional isomer of the two geometrical isomers and cannot exhibit geometrical isomerism because two identical groups (H's or Cl's) are attached to the same carbon of the double bond.

All three isomers are chemically similar e.g. the electrophilic addition reactions of alkenes.


 

Case study 2a.4 Di-substituted cycloalkanes

Cis and trans isomers can exist in 1,2-disubstituted cyclopropanes* and cyclobutanes* because the -C-C- ring structure inhibits rotation about the C-C bonds. If the 1,2-substituents are on the same side of the plane of the triangle/square of carbon atoms you get the Z (cis) form, if the are on opposite sides you get the E (trans) form. * Alicyclic compounds (means cyclo-aliphatic)

(1) (c) doc b 1,2-dichlorocyclopropane can give E/Z isomers and the group priority is Cl > H

 

Z-1,2-dichlorocyclopropane(c) doc b (cis), both highest priority groups on the same side of the 'plane' of the cyclopropane ring.

Cahn-Ingold-Prelog priority rule:  17Cl > 1H

 

and E-1,2-dichlorocyclopropane(c) doc b (trans), the highest priority groups are on opposite sides of the 'plane' of the cyclopropane ring.

  (c) doc b to help you think in 3D!

 

(2) (c) doc b 1,1-dichlorocyclopropane is a positional isomer of C3H4Cl2, and cannot exhibit geometrical isomerism.

 

(3) (c) doc b 1,2-dibromocyclobutane, likewise can give ...

 

 (c) doc b (Z isomer, cis) and (7) (c) doc b (E isomer, trans)

 

(4)(c) doc b or (9) (c) doc b 1,1-dibromocyclobutane, is a positional isomer of C4H6Br2 and cannot exhibit E/Z (geometrical) isomerism because the two bromine atoms are attached to the same carbon.

 

(5)(c) doc b 1,3-dibromocyclobutane is also positional isomer of C4H6Br2 and can exhibit E/Z (geometric) isomerism.

 Z/cis (c) doc b , with the two Br atoms on same side of the plane of the C4 ring,

and E/trans (c) doc b with the two Br atoms on each side of the plane of the cyclobutane ring.

Note 1: The molecular formulae C3H4Cl2 and C4H6Br2 can theoretically give rise to other functional group/positional/E/Z (trans/cis) isomers in the form of non-cyclic alkenes e.g.

(6) ClCH2CH=CHCl (1,3-dichloropropene)

or (7) CH3CHBr=CHBrCH3 (2,3-dibromobut-2-ene) etc. etc!

Note 2: Strictly speaking the 4 carbon ring of cyclobutanes is NOT planar, in fact the 'V' of two of the carbon atoms is bent at 26o from the 'V' of the other two carbons. However, using planar projections it is possible to work out and illustrate the E/Z isomers of cyclobutanes.


 

Case study 2a.5 Isomerism in azo (-N=N-) and R2C=N-X compounds

Organic (or inorganic) compounds of the structure R-N=N-R' (e.g. aromatic azo dyes) can exist as cis and trans isomers in just the same way as alkenes, where R or R' = H, alkyl, aryl group etc. R can be different or the same as R'. Stereochemically, the lone pairs on the nitrogen effectively behave as an atom bonding pair of electrons in determining the trigonal planar orientation of the -N= bonds and the lone pair of electrons on the nitrogen. Three groups of electrons around an atom X, always give a trigonal planar arrangement around the central atom >X-. The double bond, N=N or C=N, ensures that too high an energy is required for ready rotation about the double bond. The cis and trans forms will have different physical properties such as melting/boiling points.

Examples of -N=N- systems:

(1) (Z/cis) (c) doc b and (2) (E/trans) (c) doc b 

(all R-N=N-R' bond angles are about 120o)

Examples of >C=N- systems

Carbonyl compounds like aldehydes and ketones undergo condensation reactions of the type

RR'C=O + H2N-X ==> RR'C=N-X + H2O 

where R is different to R' and = H, alkyl or aryl etc. geometrical isomers can occur.

and when X= H (ammonia), alkyl (aliphatic primary amine), aryl (aromatic primary amine), OH (hydroxylamine), NH2 (hydrazine), NHC6H3(NO2)2 (2,4-dinitrophenylhydrazine). If for (3) and (4) if in priority R' > R (e.g. CH3CH2 > CH3)

(3) (Z/cis) (c) doc b and (4) (E/trans) (c) doc b  

(i.e. R' as a higher ranking group than R)

When R = R' i.e. (5) (c) doc b geometrical isomerism is not possible.

(Note: all >C=N-X angles are about 120o)


Case Study 2a.6 Dienes can also exhibit E/Z stereoisomerism

alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc bZ-buta-1,3-diene (cis)

and

alkenes structure and naming (c) doc b, alkenes structure and naming (c) doc b E-buta-1,3-diene (trans)


WHAT NEXT?

INDEX of isomerism & stereochemistry of organic compounds notes


what is stereoisomerism in organic chemistry? what are cis/trans isomers? why can E/Z isomers exist? why is the interconversion of cis/trans isomers difficult? describe how to use the Cahn-Ingold-Prelog priority sequence rules for E/Z (sis/trans isomers), how do you define stereoisomerism for E/Z or cis/trans isomers of a given molecular formula? give the names and structures of the E/Z cis/trans isomers of molecular formula C4H8 butenes, give the names and structures of the E/Z cis/trans isomers of molecular formula C3H4BrCl, give the names and structures of the E/Z cis/trans isomers of molecular formula C6H12 alkenes, give the names and structures of the E/Z cis/trans isomers of molecular formula C7H14 heptenes, give the names and structures of the E/Z cis/trans isomers of molecular formula C4H4O4 unsaturated dicarboxylic acids, give the names and structures of the E/Z cis/trans isomers of molecular formula C2H2Cl2 dichloroethene, give the names and structures of the E/Z cis/trans isomers of disubstituted cycloalkanes of molecular formula C3H4Cl2 dichlorocyclopropane, give the names and structures of the E/Z cis/trans isomers of molecular formula C4H6Br2 dibromocyclobutane, give the names and structures of the E/Z cis/trans isomerism of the isomers of azo compounds advanced level chemistry Cahn-Ingold-Prelog Priority Rules for AQA AS chemistry, Cahn-Ingold-Prelog Priority Rules for Edexcel A level AS chemistry, Cahn-Ingold-Prelog Priority Rules for A level OCR AS chemistry A, Cahn-Ingold-Prelog Priority Rules for OCR Salters AS chemistry B, Cahn-Ingold-Prelog Priority Rules for AQA A level chemistry, Cahn-Ingold-Prelog Priority Rules for A level Edexcel A level chemistry, Cahn-Ingold-Prelog Priority Rules for OCR A level chemistry A, Cahn-Ingold-Prelog Priority Rules for A level OCR Salters A level chemistry B Cahn-Ingold-Prelog Priority Rules for US Honours grade 11 grade 12 Cahn-Ingold-Prelog Priority Rules for pre-university chemistry courses pre-university A level revision notes for Cahn-Ingold-Prelog Priority Rules  A level guide notes on Cahn-Ingold-Prelog Priority Rules for schools colleges academies science course tutors images pictures diagrams for Cahn-Ingold-Prelog Priority Rules A level chemistry revision notes on Cahn-Ingold-Prelog Priority Rules for revising module topics notes to help on understanding of Cahn-Ingold-Prelog Priority Rules university courses in science careers in science jobs in the industry laboratory assistant apprenticeships technical internships USA US grade 11 grade 11 AQA A level chemistry notes on Cahn-Ingold-Prelog Priority Rules Edexcel A level chemistry notes on Cahn-Ingold-Prelog Priority Rules for OCR A level chemistry notes WJEC A level chemistry notes on Cahn-Ingold-Prelog Priority Rules CCEA/CEA A level chemistry notes on Cahn-Ingold-Prelog Priority Rules for university entrance examinations with advanced level chemistry

KS3 SCIENCE QUIZZES ALPHABETICAL INDEX
GCSE grade 9-1 & IGCSE CHEMISTRY Doc Brown's Travel Pictures & Notes
ADVANCED LEVEL CHEMISTRY [SEARCH BOX] - see below
GCSE 9-1 Physics Revision Notes GCSE 9-1 Biology Revision Notes
All website content Dr Phil Brown 2000 onwards. All copyrights reserved on revision notes, images, quizzes, worksheets etc. Copying of website material is NOT permitted. Exam revision summaries and references to science course specifications are unofficial. Email doc b: chem55555@hotmail.com

 Doc Brown's Chemistry 

*

 For latest updates see https://twitter.com/docbrownchem

 Have your say about doc b's website

TOP OF PAGE